Kamis, 29 Maret 2012

Hubungan Filsafat dan Ilmu

Hubungan Filsafat dan Ilmu pendidikan

Rate This
Ditinjau dari segi historis, hubungan antara filsafat dan ilmu pengetahuan mengalami perkembangan yang sangat menyolok. Pada permulaan sejarah filsafat di Yunani, “philosophia” meliputi hampir seluruh pemikiran teoritis. Tetapi dalam perkembangan ilmu pengetahuan di kemudian hari, ternyata juga kita lihat adanya kecenderungan yang lain. Filsafat Yunani Kuno yang tadinya merupakan suatu kesatuan kemudian menjadi terpecah-pecah (Bertens, 1987, Nuchelmans, 1982).
Lebih lanjut Nuchelmans (1982), mengemukakan bahwa dengan munculnya ilmu pengetahuan alam pada abad ke 17, maka mulailah terjadi perpisahan antara filsafat dan ilmu pengetahuan. Dengan demikian dapatlah dikemukakan bahwa sebelum abad ke 17 tersebut ilmu pengetahuan adalah identik dengan filsafat. Pendapat tersebut sejalan dengan pemikiran Van Peursen (1985), yang mengemukakan bahwa dahulu ilmu merupakan bagian dari filsafat, sehingga definisi tentang ilmu bergantung pada sistem filsafat yang dianut.
Dalam perkembangan lebih lanjut menurut Koento Wibisono (1999), filsafat itu sendiri telah mengantarkan adanya suatu konfigurasi dengan menunjukkan bagaimana “pohon ilmu pengetahuan” telah tumbuh mekar-bercabang secara subur. Masing-masing cabang melepaskan diri dari batang filsafatnya, berkembang mandiri dan masing-masing mengikuti metodologinya sendiri-sendiri.
Dengan demikian, perkembangan ilmu pengetahuan semakin lama semakin maju dengan munculnya ilmu-ilmu baru yang pada akhirnya memunculkan pula sub-sub ilmu pengetahuan baru bahkan kearah ilmu pengetahuan yang lebih khusus lagi seperti spesialisasi-spesialisasi. Oleh karena itu tepatlah apa yang dikemukakan oleh Van Peursen (1985), bahwa ilmu pengetahuan dapat dilihat sebagai suatu sistem yang jalin-menjalin dan taat asas (konsisten) dari ungkapan-ungkapan yang sifat benar-tidaknya dapat ditentukan.
Terlepas dari berbagai macam pengelompokkan atau pembagian dalam ilmu pengetahuan, sejak F.Bacon (1561-1626) mengembangkan semboyannya “Knowledge Is Power”, kita dapat mensinyalir bahwa peranan ilmu pengetahuan terhadap kehidupan manusia, baik individual maupun sosial menjadi sangat menentukan. Karena itu implikasi yang timbul menurut Koento Wibisono (1984), adalah bahwa ilmu yang satu sangat erat hubungannya dengan cabang ilmu yang lain serta semakin kaburnya garis batas antara ilmu dasar-murni atau teoritis dengan ilmu terapan atau praktis.
Untuk mengatasi gap antara ilmu yang satu dengan ilmu yang lainnya, dibutuhkan suatu bidang ilmu yang dapat menjembatani serta mewadahi perbedaan yang muncul. Oleh karena itu, maka bidang filsafatlah yang mampu mengatasi hal tersebut. Hal ini senada dengan pendapat Immanuel Kant (dalam Kunto Wibisono dkk., 1997) yang menyatakan bahwa filsafat merupakan disiplin ilmu yang mampu menunjukkan batas-batas dan ruang lingkup pengetahuan manusia secara tepat. Oleh sebab itu Francis Bacon (dalam The Liang Gie, 1999) menyebut filsafat sebagai ibu agung dari ilmu-ilmu (the great mother of the sciences).
Lebih lanjut Koento Wibisono dkk. (1997) menyatakan, karena pengetahuan ilmiah atau ilmu merupakan “a higher level of knowledge”, maka lahirlah filsafat ilmu sebagai penerusan pengembangan filsafat pengetahuan. Filsafat ilmu sebagai cabang filsafat menempatkan objek sasarannya: Ilmu (Pengetahuan). Bidang garapan filsafat ilmu terutama diarahkan pada komponen-komponen yang menjadi tiang penyangga bagi eksistensi ilmu yaitu: ontologi, epistemologi dan aksiologi. Hal ini didukung oleh Israel Scheffler (dalam The Liang Gie, 1999), yang berpendapat bahwa filsafat ilmu mencari pengetahuan umum tentang ilmu atau tentang dunia sebagaimana ditunjukkan oleh ilmu.
Interaksi antara ilmu dan filsafat mengandung arti bahwa filsafat dewasa ini tidak dapat berkembang dengan baik jika terpisah dari ilmu. Ilmu tidak dapat tumbuh dengan baik tanpa kritik dari filsafat. Dengan mengutip ungkapan dari Michael Whiteman (dalam Koento Wibisono dkk.1997), bahwa ilmu kealaman persoalannya dianggap bersifat ilmiah karena terlibat dengan persoalan-persoalan filsafati sehingga memisahkan satu dari yang lain tidak mungkin. Sebaliknya, banyak persoalan filsafati sekarang sangat memerlukan landasan pengetahuan ilmiah supaya argumentasinya tidak salah. Lebih jauh, Jujun S. Suriasumantri (1982:22), –dengan meminjam pemikiran Will Durant– menjelaskan hubungan antara ilmu dengan filsafat dengan mengibaratkan filsafat sebagai pasukan marinir yang berhasil merebut pantai untuk pendaratan pasukan infanteri. Pasukan infanteri ini adalah sebagai pengetahuan yang diantaranya adalah ilmu. Filsafatlah yang memenangkan tempat berpijak bagi kegiatan keilmuan. Setelah itu, ilmulah yang membelah gunung dan merambah hutan, menyempurnakan kemenangan ini menjadi pengetahuan yang dapat diandalkan.
Untuk melihat hubungan antara filsafat dan ilmu, ada baiknya kita lihat pada perbandingan antara ilmu dengan filsafat dalam bagan di bawah ini, (disarikan dari Drs. Agraha Suhandi, 1992)
Ilmu Filsafat
Segi-segi yang dipelajari dibatasi agar dihasilkan rumusan-rumusan yang pasti
Obyek penelitian yang terbatas
Tidak menilai obyek dari suatu sistem nilai tertentu.
Bertugas memberikan jawaban Mencoba merumuskan pertanyaan atas jawaban. Mencari prinsip-prinsip umum, tidak membatasi segi pandangannya bahkan cenderung memandang segala sesuatu secara umum dan keseluruhan
Keseluruhan yang ada
Menilai obyek renungan dengan suatu makna, misalkan , religi, kesusilaan, keadilan dsb.

Sejarah Geometri Non Euclid

GEOMETRI NON EUCLID

Geometri Non Euclid

Non-Euclidean geometri adalah salah satu dari dua geometri tertentu yang, longgar berbicara, diperoleh dengan meniadakan Euclidean paralel postulat , yaitu hiperbolik dan geometri eliptik . Ini adalah satu istilah yang, untuk alasan sejarah, memiliki arti dalam matematika yang jauh lebih sempit dari yang terlihat untuk memiliki dalam bahasa Inggris umum. Ada banyak sekali geometri yang tidak geometri Euclidean , tetapi hanya dua yang disebut sebagai non-Euclidean geometri.
Perbedaan penting antara geometri Euclidean dan non-Euclidean adalah sifat paralel baris. Euclid ‘s kelima mendalilkan, yang paralel mendalilkan , setara dengan yang Playfair postulat yang menyatakan bahwa, dalam bidang dua dimensi, untuk setiap garis yang diketahui ℓ dan A titik, yang tidak pada ℓ, ada tepat satu garis melalui A yang tidak berpotongan ℓ. Dalam geometri hiperbolik, sebaliknya, ada tak terhingga banyak baris melalui A ℓ tidak berpotongan, sementara dalam geometri eliptik, setiap baris melalui A memotong ℓ (lihat entri pada geometri hiperbolik , geometri berbentuk bulat panjang , dan geometri mutlak untuk informasi lebih lanjut).
Cara lain untuk menggambarkan perbedaan antara geometri adalah mempertimbangkan dua garis lurus tanpa batas waktu diperpanjang dalam bidang dua dimensi yang baik tegak lurus ke saluran ketiga:
• Dalam geometri Euclidean garis tetap konstan jarak dari satu sama lain bahkan jika diperpanjang hingga tak terbatas, dan dikenal sebagai paralel.
• Dalam geometri hiperbolik mereka “kurva pergi” satu sama lain, peningkatan jarak sebagai salah satu bergerak lebih jauh dari titik persimpangan dengan tegak lurus umum, garis-garis ini sering disebut ultraparallels.
• Dalam geometri berbentuk bulat panjang garis “kurva ke arah” satu sama lain dan akhirnya berpotongan.
Sejarah
Sejarah awal
Sementara geometri Euclidean , dinamai matematikawan Yunani Euclid , termasuk beberapa dari matematika tertua, non-Euclidean geometri tidak secara luas diterima sebagai sah sampai abad ke-19.
Perdebatan yang akhirnya menyebabkan penemuan non-Euclidean geometri mulai segera setelah karya Euclid ‘s Elemen ditulis. Dalam Elemen, Euclid dimulai dengan sejumlah asumsi (23 definisi, lima pengertian umum, dan lima postulat) dan berusaha untuk membuktikan semua hasil lain ( proposisi ) dalam pekerjaan. Yang paling terkenal dari postulat sering disebut sebagai “Kelima Postulat Euclid,” atau cukup dengan ” paralel mendalilkan “, yang dalam formulasi asli Euclid adalah :
Jika garis lurus jatuh pada dua garis lurus sedemikian rupa sehingga sudut interior pada sisi yang sama bersama-sama kurang dari dua sudut yang tepat, maka garis-garis lurus, jika diproduksi tanpa batas waktu, bertemu di sisi itu yang adalah sudut kurang dari dua kanan sudut.
Lain yang hebat matematika telah menemukan bentuk-bentuk sederhana dari properti ini (lihat postulat paralel untuk laporan setara). Terlepas dari bentuk dalil, bagaimanapun, secara konsisten tampaknya lebih rumit dari yang lain Euclid postulat (termasuk, misalnya, “Antara dua titik garis lurus bisa diambil”).
Setidaknya seribu tahun, geometers merasa kesulitan akibat kompleksitas yang berbeda dari kelima postulat, dan percaya itu bisa dibuktikan sebagai teorema dari keempat lainnya. Banyak berusaha untuk menemukan bukti oleh kontradiksi , termasuk matematikawan Arab Ibn al-Haytham (Alhazen, abad ke-11), dengan Persia matematikawan Umar Khayyām (abad 12) dan Nasir al-Din al-Tusi (abad ke-13), dan dengan Italia matematika Giovanni Girolamo Saccheri (abad 18).
Teorema Ibn al-Haytham, Khayyam dan al-Tusi pada segiempat , termasuk segiempat Lambert dan Saccheri segiempat , adalah “teorema pertama dari hiperbolik dan geometri berbentuk bulat panjang . ” Teorema-teorema bersama dengan alternatif mereka mendalilkan, seperti aksioma Playfair ‘s , memainkan peran penting dalam perkembangan selanjutnya dari non-Euclidean geometri. Upaya-upaya awal pada menantang kelima postulat memiliki pengaruh yang besar terhadap pembangunan di antara geometers kemudian Eropa, termasuk Witelo , Levi ben Gerson , Alfonso , John Wallis dan Saccheri. Semua upaya awal dibuat di mencoba untuk merumuskan non-Euclidean Namun geometri diberikan bukti cacat dari paralel mendalilkan, mengandung asumsi yang pada dasarnya setara dengan postulat paralel. Upaya-upaya awal itu, bagaimanapun, memberikan beberapa sifat awal dari geometri hiperbolik dan eliptik.
Khayyam, misalnya, mencoba untuk mendapatkan dari setara mendalilkan ia merumuskan dari “prinsip-prinsip Bertuah” ( Aristoteles ): “Dua garis lurus berpotongan konvergen dan tidak mungkin untuk dua garis lurus konvergen menyimpang ke arah di mana mereka bertemu. ” Khayyam kemudian dianggap sebagai tiga kasus yang tepat, tumpul, dan akut yang sudut puncak dari sebuah segiempat Saccheri dapat mengambil dan setelah membuktikan sejumlah teorema tentang mereka, ia benar membantah kasus tumpul dan akut berdasarkan dalil nya dan karena berasal klasik postulat Euclid yang tidak disadarinya adalah setara dengan postulat sendiri. Contoh lain adalah anak al-Tusi, Sadr al-Din (kadang-kadang dikenal sebagai “Pseudo-Tusi”), yang menulis sebuah buku tentang subjek di 1298, berdasarkan pengalaman kemudian al-Tusi, yang disajikan lain setara hipotesis untuk paralel dalil . “Dia pada dasarnya revisi kedua sistem Euclidean aksioma dan dalil-dalil dan bukti-bukti proposisi banyak dari Elemen.” Karyanya diterbitkan di Roma tahun 1594 dan dipelajari oleh geometers Eropa, termasuk Saccheri yang mengkritik pekerjaan ini serta yang dari Wallis.
Giordano Vitale , dalam bukunya Euclide restituo (1680, 1686), menggunakan Saccheri segiempat untuk membuktikan bahwa jika tiga poin adalah jarak yang sama di pangkalan AB dan CD KTT, maka AB dan CD di mana-mana berjarak sama.
Dalam sebuah karya berjudul Euclides ab Omni Naevo Vindicatus (Euclid Dibebaskan dari Semua Cacat), yang diterbitkan tahun 1733, Saccheri geometri eliptik cepat dibuang sebagai kemungkinan (beberapa orang lain dari aksioma Euclid harus dimodifikasi untuk geometri berbentuk bulat panjang untuk bekerja) dan mulai bekerja membuktikan besar jumlah hasil dalam geometri hiperbolik. Dia akhirnya mencapai titik di mana ia percaya bahwa hasil menunjukkan ketidakmungkinan geometri hiperbolik. Klaimnya tampaknya telah didasarkan pada pengandaian Euclidean, karena tidak ada kontradiksi logis hadir. Dalam upaya untuk membuktikan geometri Euclidean ia malah tidak sengaja menemukan sebuah geometri baru yang layak, tapi tidak menyadarinya.
Pada 1766 Johann Lambert menulis, tetapi tidak mempublikasikan, Theorie der Parallellinien di mana ia mencoba, sebagai Saccheri lakukan, untuk membuktikan postulat kelima. Dia bekerja dengan angka yang hari ini kita sebut segiempat Lambert, suatu segiempat dengan tiga sudut kanan (dapat dianggap setengah dari segiempat Saccheri). Dia segera menghilangkan kemungkinan bahwa sudut keempat adalah tumpul, karena memiliki Saccheri dan Khayyam, dan kemudian melanjutkan untuk membuktikan teorema banyak berdasarkan asumsi sudut akut. Tidak seperti Saccheri, ia tidak pernah merasa bahwa ia telah mencapai kontradiksi dengan asumsi ini. Dia telah membuktikan hasil non-Euclidean bahwa jumlah sudut dalam segitiga meningkat sebagai luas segitiga berkurang, dan ini menyebabkan dia untuk berspekulasi mengenai kemungkinan model kasus akut pada bola berjari-jari imajiner. Dia tidak membawa ide ini lebih jauh.
Pada saat ini itu sangat percaya bahwa alam semesta bekerja menurut prinsip-prinsip geometri Euclidean.

Penciptaan non-Euclidean geometri
Awal abad ke-19 akhirnya akan menyaksikan langkah-langkah yang menentukan dalam penciptaan non-Euclidean geometri. Sekitar 1830, Hungaria matematika János Bolyai dan Rusia matematika Nikolai Lobachevsky secara terpisah diterbitkan risalah pada geometri hiperbolik. Akibatnya, geometri hiperbolik disebut Bolyai-Lobachevskian geometri, baik sebagai matematikawan, independen satu sama lain, adalah penulis dasar non-Euclidean geometri. Gauss disebutkan kepada ayah Bolyai, ketika ditampilkan karya Bolyai muda, bahwa ia telah dikembangkan seperti geometri sekitar 20 tahun sebelumnya, meskipun ia tidak mempublikasikan. Sementara Lobachevsky menciptakan geometri non-Euclidean dengan meniadakan paralel mendalilkan, Bolyai bekerja di luar geometri di mana kedua Euclidean dan geometri hiperbolik yang mungkin tergantung pada k parameter. Bolyai berakhir karyanya dengan menyebutkan bahwa tidak mungkin untuk memutuskan melalui penalaran matematis saja jika geometri alam semesta fisik Euclid atau non-Euclidean, ini adalah tugas untuk ilmu fisik.
Bernhard Riemann , dalam sebuah kuliah yang terkenal pada 1854, mendirikan bidang geometri Riemann , membahas khususnya ide-ide sekarang disebut manifold , Riemannian metrik , dan kelengkungan . Ia dibangun sebuah keluarga tak terbatas geometri yang tidak Euclidean dengan memberikan rumus untuk keluarga metrik Riemann pada bola unit dalam ruang Euclidean . Yang paling sederhana ini disebut geometri berbentuk bulat panjang dan dianggap menjadi geometri non-Euclidean karena kurangnya garis paralel.
Terminologi
Gauss yang menciptakan istilah “non-euclidean geometri”. Dia merujuk pada karyanya sendiri yang hari ini kita sebut geometri hiperbolik. Beberapa penulis modern yang masih menganggap “non-euclidean geometri” dan “geometri hiperbolik” menjadi sinonim. Pada tahun 1871, Felix Klein , dengan mengadaptasi metrik dibahas oleh Arthur Cayley pada tahun 1852, mampu membawa sifat metrik menjadi sebuah lokasi yang proyektif dan karena itu mampu menyatukan perawatan geometri hiperbolik, euclidean dan berbentuk bulat panjang di bawah payung projective geometri . Klein bertanggung jawab untuk istilah “hiperbolik” dan “eliptik” (dalam sistem, ia disebut geometri Euclidean “parabola”, sebuah istilah yang belum selamat dari ujian waktu). Pengaruhnya telah menyebabkan penggunaan saat ini dari “geometri non-euclidean” untuk berarti baik geometri “hiperbolik” atau “berbentuk bulat panjang”.
Ada beberapa hebat matematika yang akan memperpanjang daftar geometri yang harus disebut “non-euclidean” dengan berbagai cara. Dalam disiplin ilmu lainnya, terutama yang paling matematika fisika , istilah “non-euclidean” sering diartikan tidak Euclidean .
Aksioma dasar non-Euclidean geometri
Geometri Euclidean aksiomatik dapat dijelaskan dalam beberapa cara. Sayangnya, sistem yang asli Euclid lima postulat (aksioma) bukan salah satu dari ini sebagai bukti nya mengandalkan asumsi tak tertulis beberapa yang juga seharusnya diambil sebagai aksioma. sistem Hilbert yang terdiri dari 20 aksioma paling dekat mengikuti pendekatan Euclid dan memberikan pembenaran untuk semua bukti Euclid. Sistem lain, menggunakan set yang berbeda dari istilah terdefinisi mendapatkan geometri yang sama dengan jalan yang berbeda. Dalam semua pendekatan, bagaimanapun, ada aksioma yang secara logis setara dengan kelima Euclid postulat, paralel dalil. Hilbert menggunakan bentuk aksioma Playfair, sementara Birkhoff , misalnya, menggunakan aksioma yang mengatakan bahwa “tidak ada sepasang yang sama tetapi tidak kongruen segitiga. ” Dalam salah satu sistem, penghapusan satu aksioma yang setara dengan postulat sejajar, dalam bentuk apapun yang diperlukan, dan meninggalkan semua aksioma lainnya utuh, menghasilkan geometri absolut . Sebagai pertama 28 proposisi Euclid (dalam The Elements) tidak memerlukan penggunaan postulat paralel atau apa setara dengan itu, mereka semua pernyataan benar dalam geometri mutlak.
Untuk mendapatkan geometri non-Euclidean, paralel dalil (atau ekuivalen) harus diganti oleh yang negasi . Meniadakan aksioma Playfair ‘s bentuk, karena itu adalah pernyataan majemuk (… terdapat satu dan hanya satu …), bisa dilakukan dengan dua cara. Entah ada akan ada lebih dari satu baris melalui paralel titik ke garis diberikan atau akan ada tidak ada garis melalui titik paralel ke garis yang diberikan. Dalam kasus pertama, menggantikan paralel dalil (atau ekuivalen) dengan pernyataan “Di pesawat, diberi titik P dan garis l tidak melewati P, terdapat dua garis melalui P yang tidak memenuhi l” dan menjaga semua aksioma lainnya, hasil geometri hiperbolik . Kasus kedua tidak ditangani dengan mudah. Cukup mengganti paralel mendalilkan dengan pernyataan, “Dalam pesawat, diberi titik P dan garis l tidak melewati P, semua garis melalui P memenuhi l”, tidak memberikan satu set konsisten aksioma. Ini mengikuti sejak garis paralel ada di geometri mutlak , tetapi pernyataan ini mengatakan bahwa tidak ada garis paralel. Masalah ini dikenal (dalam kedok yang berbeda) untuk Khayyam, Saccheri dan Lambert dan merupakan dasar untuk menolak mereka apa yang dikenal sebagai “kasus sudut tumpul”. Untuk mendapatkan satu set konsisten aksioma yang meliputi aksioma ini tentang tidak memiliki garis paralel, beberapa aksioma lain harus tweak. Penyesuaian harus dibuat tergantung pada sistem aksioma yang digunakan. Beberapa diantaranya tweak akan memiliki efek memodifikasi kedua postulat Euclid dari pernyataan bahwa segmen garis dapat diperpanjang tanpa batas waktu untuk pernyataan bahwa garis tak terbatas. Riemann ‘s geometri eliptik muncul sebagai geometri paling alami memuaskan aksioma ini.
Model non-Euclidean geometri

Untuk rincian lebih lanjut tentang topik ini, lihat Model non-Euclidean geometri .
Pada bola, jumlah sudut segitiga tidak sama dengan 180 °. Permukaan sebuah bola bukan ruang Euclidean, tetapi secara lokal hukum geometri Euclidean adalah perkiraan yang baik. Dalam sebuah segitiga kecil di muka bumi, jumlah dari sudut sangat hampir 180 °.
Dua geometri Euclidean dimensi dimodelkan dengan gagasan kita tentang “datar pesawat . “
Geometri Elliptic
Model sederhana untuk geometri eliptik adalah bola, di mana garis ” lingkaran besar “(seperti ekuator atau meridian di dunia ), dan poin yang berlawanan satu sama lain (disebut poin antipodal ) diidentifikasi (dianggap sama). Ini juga salah satu model standar dari pesawat proyektif nyata . Perbedaannya adalah bahwa sebagai model geometri eliptik metrik diperkenalkan memungkinkan pengukuran panjang dan sudut, sedangkan pada model pesawat proyektif tidak ada metrik tersebut.
Dalam model berbentuk bulat panjang, untuk setiap garis yang diketahui ℓ dan titik A, yang tidak pada ℓ, semua baris melalui A akan berpotongan ℓ.
Geometri hiperbolik
Bahkan setelah pekerjaan Lobachevsky, Gauss, dan Bolyai, pertanyaannya tetap: apakah model seperti itu ada untuk geometri hiperbolik ? Model untuk geometri hiperbolik dijawab oleh Eugenio Beltrami , pada 1868, yang pertama kali menunjukkan bahwa permukaan yang disebut pseudosphere memiliki sesuai kelengkungan untuk model sebagian dari ruang hiperbolik , dan dalam makalah kedua di tahun yang sama, mendefinisikan Model Klein yang model keseluruhan dari ruang hiperbolik, dan digunakan ini untuk menunjukkan bahwa geometri Euclidean dan geometri hiperbolik adalah equiconsistent , sehingga geometri hiperbolik adalah logis konsisten jika dan hanya jika geometri Euclidean adalah. (Implikasi terbalik berikut dari horosphere model geometri Euclidean.)
Dalam model hiperbolik, dalam bidang dua dimensi, untuk setiap garis yang diketahui ℓ dan Titik, yang tidak pada ℓ, ada tak terhingga banyak baris melalui A yang tidak berpotongan ℓ.



Dalam model ini konsep-konsep non-Euclidean geometri sedang diwakili oleh objek Euclidean dalam pengaturan Euclidean. Ini memperkenalkan sebuah distorsi perseptual dimana garis-garis lurus dari geometri non-Euclidean yang diwakili oleh kurva Euclidean yang secara visual membungkuk. Ini “lentur” bukan milik non-Euclidean baris, hanya kecerdasan dari cara mereka diwakili.
Sifat Jarang
Euclid dan geometri non-Euclidean secara alami memiliki sifat serupa, yaitu mereka yang tidak tergantung pada sifat paralelisme. Kesamaan ini adalah subjek dari geometri netral (juga disebut geometri absolut). Namun, sifat yang membedakan satu geometri dari yang lain adalah orang-orang yang secara historis menerima perhatian yang besar.
Selain perilaku baris sehubungan dengan tegak lurus umum, disebutkan dalam pendahuluan, kami juga memiliki berikut ini:
• Sebuah segiempat Lambert adalah segiempat yang memiliki tiga sudut kanan. Sudut keempat dari segiempat Lambert adalah akut jika geometri hiperbolik, sebuah sudut yang tepat jika geometri Euclidean adalah atau tumpul jika geometri adalah berbentuk bulat panjang. Akibatnya, empat persegi panjang hanya ada dalam geometri Euclidean.
• Sebuah segiempat Saccheri adalah segiempat yang memiliki dua sisi dengan panjang yang sama, baik tegak lurus ke samping disebut basis. Dua lainnya dari sudut segiempat Saccheri disebut sudut puncak dan mereka memiliki ukuran yang sama. Sudut puncak dari sebuah segiempat Saccheri yang akut jika geometri hiperbolik, sudut yang tepat jika geometri Euclidean adalah sudut tumpul dan jika geometri adalah berbentuk bulat panjang.
• Jumlah dari ukuran sudut segitiga apapun adalah kurang dari 180 ° jika geometri hiperbolik, sama dengan 180 ° jika geometri Euclidean, dan lebih besar dari 180 ° jika geometri adalah berbentuk bulat panjang. Cacat segitiga adalah nilai numerik (180 ° – jumlah dari ukuran sudut segitiga). Hasil ini juga dapat dinyatakan sebagai: cacat segitiga dalam geometri hiperbolik adalah positif, cacat segitiga dalam geometri Euclidean adalah nol, dan cacat segitiga dalam geometri eliptik adalah negatif.
Pentingnya
Non-Euclidean geometri adalah contoh dari sebuah pergeseran paradigma dalam sejarah ilmu pengetahuan . Sebelum model pesawat non-Euclidean yang disajikan oleh Beltrami, Klein, dan Poincaré, geometri Euclidean berdiri tertandingi sebagai model matematika dari ruang . Selain itu, karena substansi subjek dalam geometri sintetis adalah pameran kepala rasionalitas, titik Euclidean pandang diwakili otoritas mutlak. Non-Euclidean geometri, meskipun diasimilasi oleh peneliti dipelajari, terus menjadi tersangka bagi mereka yang tidak memiliki paparan konsep hiperbolis dan elips.
Penemuan non-Euclidean geometri memiliki efek riak yang jauh melampaui batas-batas matematika dan ilmu pengetahuan. Filsuf Immanuel Kant pengobatan itu pengetahuan manusia memiliki peran khusus untuk geometri. Itu adalah contoh utama tentang sintetis pengetahuan apriori, tidak berasal dari indera atau disimpulkan melalui logika – pengetahuan kita tentang ruang merupakan kebenaran bahwa kita dilahirkan dengan. Sayangnya bagi Kant, konsepnya ini geometri unalterably benar adalah Euclidean. Teologi juga dipengaruhi oleh perubahan dari kebenaran absolut untuk kebenaran relatif dalam matematika yang adalah hasil dari pergeseran paradigma.
Keberadaan non-Euclidean geometri berdampak pada “kehidupan intelektual” dari Inggris Victoria dalam banyak hal dan khususnya adalah salah satu faktor yang menyebabkan yang menyebabkan pemeriksaan ulang pengajaran geometri berdasarkan Euclid ‘s Elemen . Masalah kurikulum yang hangat diperdebatkan pada saat itu dan bahkan subyek dari bermain, Euclid dan Rivals modern, ditulis oleh penulis Alice in Wonderland.


PERTANYAAN:
1.Apa perbedaan penting antara geometri euclid dan non euclid?
2.Ada cara lain untuk menggambarkan perbedaan antara geometri yaitu....
3.Jelaskan sejarah awal penemuan geometri non euclid!
4.Siapakah penulis dasar geometri non euclid!
5.Apa pentingnya geometri euclid di masyarakat?

Sejarah Geometri Euclid

Geometri Euclid
Daripada Wikipedia, ensiklopedia bebas.
Satu persembahan Euclid dariSekolah Athens oleh Raphael.
Geometri Euclid merupakan sebuah sistem matematik yang disumbangkan oleh seorang ahli matematik Yunani bernama Euclid dari Alexandria. Teks Euclid,Elements merupakan sebuah kajian sistematik yang terawal mengenai geometri. Ia sudah menjadi salah satu buku-buku yang paling berpengarh di dalam sejarah, sama banyaknya dengan kaedahnya yang mempunyai isi kandungan matematik. Kaedah cara yang mengandungi andaian satu set aksiom secara intuitif yang sangat menarik, dan kemudiannya membuktikan banyak usul (teorem-teorem) daripada aksiom-aksiom berkenaan. Walaupun banyak daripada keputusan-keputusan oleh Euclid sudah dinyatakan oleh ahli-ahli matematik Yunani sebelumnya, Euclid merupakan orang yang pertama untuk menunjukkan bagaimana usul-usul ini diletakkan secara sempurna membentuk satu deduksi dan sistem logik yang komprehensif.
Buku Elements ini bermula dengan geometri satah, yang masih lagi diajar di sekolah menengah sebagai satu sistem aksioman dan contoh-contoh pembuktian formal yang pertama. Kemudiannya, Elements merangkumi geometri pepejal dalam tiga dimensi, dan seterusnya geometri Euclid telah dipanjangkan kepada satu bilangan dimensi yang terhingga. Kebanyakan daripada Elements menyatakan keputusan-keputusan dalam apa yang kini disebut sebagai teori nombor, yang boleh dibuktikan menerusi kaedah geometri.
Selama dua ribu tahun, kata adjektif "Euclid" tidak diperlukan kerana pada masa itu tiada geometri lain dapat dibayangkan. Aksiom-aksiom Euclid nampak seperti sangat jelas sehinggakan apa-apa teorem lain yang dibuktikan daripadanya dianggap benar secara mutlak. Hari ini, bagaimanapun, banyak geometri bukan Euclid sudah diketahui, yang pertamanya telah dijumpai pada awal abad ke-19. Ia juga tidak boleh diambil mudah bahawa geometri Euclid hanya menggambarkan ruang fizikal. Satu implikasi daripada teori Einstein mengenai teori kerelatifan umum bahawa geometri Euclid merupakan satu anggaran yang baik kepada sifat-sifat ruang fizikal hanyak sekiranya medan graviti tidak terlalu kuat.
Gambaran sejarah purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.
Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.

Awal Bilangan
Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol diantaranya :
Simbol bilangan bangsa Babilonia:
Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM:
Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno:
Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia:
Simbol bilangan bangsa Yunani Kuno:
Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini:
Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini, seperti yang tampak dalam gambar berikut:

Perkembangan Teori Bilangan
Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal


PERTANYAAN:
1.Geometri adalah...
2.Salah satu buku euclid berisi tentang..
3.Jelaskan gambaran sejarah purbakala dari matematika!
4.Bukti terdini matematika tertulis adalah...
5.Matematika Babilonia ditulis menggunakan sistem...

Sejarah Kalkulus


SEJARAH KALKULUS

A.        DEFINISI KALKULUS
Kalkulus (bahasa Latin, kalkulus, batu kecil yang digunakan untuk menghitung) adalah cabang matematika terfokus pada batas, fungsi, turunan, integral, dan deret tak hingga. Mata kuliah ini merupakan bagian utama modern pendidikan matematika. Ini memiliki dua cabang utama, diferensial kalkulus dan integral kalkulus, yang berhubungan dengan teorema fundamental kalkulus. Kalkulus adalah studi tentang perubahan, dengan cara yang sama bahwa geometri adalah studi tentang bentuk dan aljabar adalah studi tentang operasi dan aplikasi mereka untuk memecahkan persamaan. Sebuah kursus dalam kalkulus adalah pintu gerbang ke lain, kursus lebih maju dalam matematika dikhususkan untuk mempelajari fungsi dan batas, luas disebut analisis matematis. Kalkulus memiliki aplikasi luas dalam ilmu pengetahuan, ekonomi, dan rekayasa dan dapat memecahkan banyak masalah yang aljabar saja tidak cukup.
Secara historis, kalkulus disebut "kalkulus infinitesimals", atau "kalkulus". Lebih umum, kalkulus (kalkuli jamak) mengacu pada metode atau sistem perhitungan dipandu oleh manipulasi simbolis ekspresi. Beberapa contoh terkenal lainnya kalkuli adalah kalkulus proposisional, kalkulus variasional, kalkulus lambda, pi kalkulus, dan bergabung kalkulus.

B.        SEJARAH KALKULUS

1.     ZAMAN KUNO


Isaac Newton mengembangkan penggunaan kalkulus dalam bukunya hukum gerak dan gravitasi . Periode kuno memperkenalkan beberapa ide yang menyebabkan terpisahkan kalkulus, tetapi tampaknya tidak telah mengembangkan ide-ide ini dengan cara yang ketat dan sistematis. Perhitungan volume dan daerah, salah satu tujuan dari integral kalkulus, dapat ditemukan di Mesir Moskow papirus (c. 1820 SM), tetapi formula instruksi belaka, dengan indikasi untuk metode, dan beberapa dari mereka salah. Sejak usia matematika Yunani, Eudoxus (sekitar 408-355 SM) menggunakan metode kelelahan, yang prefigures konsep batas, untuk menghitung luas dan volume, sementara Archimedes (± 287-212 SM) mengembangkan gagasan ini lebih jauh, menciptakan heuristik yang menyerupai metode kalkulus integral. Para metode kelelahan kemudian diciptakan kembali di Cina oleh Liu Hui pada abad ke-3 untuk menemukan luas lingkaran. Pada abad ke-5, Zu Chongzhi membentuk metode yang kemudian akan disebut prinsip Cavalieri 's untuk mencari volume sebuah bola.

2.     PADA ABAD PERTENGAHAN

Dalam matematika abad ke-14 India Madhava dari Sangamagrama dan sekolah Kerala astronomi dan matematika menyatakan banyak komponen kalkulus seperti deret Taylor, terbatas seri perkiraan, sebuah uji integral untuk konvergensi, bentuk awal diferensiasi, Istilah integrasi dengan istilah, metode iteratif untuk solusi non-linear persamaan, dan teori bahwa area di bawah kurva adalah integralnya. Beberapa mempertimbangkan Yuktibhāṣā sebagai teks pertama pada kalkulus.

 


3.     PADA MASA MODERN

Di Eropa, karya mendasar adalah sebuah risalah karena Bonaventura Cavalieri, yang berpendapat bahwa volume dan daerah harus dihitung sebagai jumlah dari volume dan bidang amat sangat tipis lintas-bagian. Ide-ide serupa dengan 'Archimedes di Cara ini, tetapi risalah ini telah hilang hingga bagian awal abad kedua puluh. Kerja Cavalieri's tidak dihormati karena metodenya dapat menyebabkan hasil yang salah, dan jumlah yang sangat kecil dia memperkenalkan yang jelek pada awalnya.
Studi formal kalkulus dikombinasikan infinitesimals Cavalieri's dengan kalkulus terbatas dari perbedaan dikembangkan di Eropa pada sekitar waktu yang sama. Pierre de Fermat, mengklaim bahwa dia dipinjam dari Diophantus, memperkenalkan konsep adequality, yang diwakili kesetaraan hingga jangka kesalahan sangat kecil. Kombinasi ini dicapai oleh John Wallis, Isaac Barrow, dan James Gregory, dua terakhir membuktikan teorema dasar kalkulus kedua sekitar 1675.
Para aturan produk dan aturan rantai, gagasan derivatif lebih tinggi, deret Taylor, dan fungsi analitis diperkenalkan oleh Isaac Newton dalam notasi istimewa yang digunakan untuk memecahkan masalah matematika fisika. Dalam publikasi, Newton diulang ide-idenya sesuai dengan idiom matematika dari waktu, menggantikan perhitungan dengan infinitesimals oleh argumen geometris setara yang dianggap tercela. Dia menggunakan metode kalkulus untuk memecahkan masalah gerak planet, bentuk permukaan cairan berputar, oblateness bumi, gerakan berat geser pada cycloid, dan banyak masalah lain yang dibahas dalam bukunya Principia Mathematica (1687). Dalam pekerjaan lain, ia mengembangkan ekspansi seri untuk fungsi, termasuk kekuatan fraksional dan irasional, dan jelas bahwa ia memahami prinsip-prinsip dari deret Taylor. Dia tidak mempublikasikan semua penemuan ini, dan saat ini metode yang sangat kecil masih dianggap jelek.
Gottfried Wilhelm Leibniz adalah orang pertama yang mempublikasikan hasilnya pada pengembangan kalkulus.
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gottfried_Wilhelm_von_Leibniz.jpg/200px-Gottfried_Wilhelm_von_Leibniz.jpgIde-ide ini adalah sistematis ke dalam kalkulus sejati infinitesimals oleh Gottfried Wilhelm Leibniz, yang pada awalnya dituduh plagiarisme oleh Newton. Dia sekarang dianggap sebagai penemu independen dan kontributor kalkulus. Nya kontribusi adalah untuk menyediakan sebuah set aturan untuk memanipulasi jumlah yang sangat kecil, memungkinkan perhitungan turunan kedua dan lebih tinggi, dan menyediakan aturan produk dan aturan rantai, dalam diferensial dan bentuk integral. Tidak seperti Newton, Leibniz membayar banyak perhatian pada formalisme, sering menghabiskan hari-hari menentukan simbol-simbol yang sesuai untuk konsep.
Leibniz dan Newton biasanya baik dikreditkan dengan penemuan kalkulus. Newton adalah yang pertama menerapkan kalkulus untuk umum fisika dan Leibniz mengembangkan banyak notasi yang digunakan dalam kalkulus hari ini. Wawasan dasar yang baik Newton dan Leibniz diberikan adalah hukum diferensiasi dan integrasi, kedua dan turunan yang lebih tinggi, dan gagasan dari seri polinomial aproksimasi. Saat Newton, teorema dasar kalkulus dikenal.
Ketika Newton dan Leibniz mempublikasikan hasil mereka pertama, ada kontroversi besar di mana matematika (dan karena itu negara mana) kredit layak. Newton berasal hasilnya pertama, tetapi Leibniz dipublikasikan pertama. Newton mengklaim Leibniz mencuri ide dari catatan yang tidak dipublikasikan, yang Newton telah dibagi dengan beberapa anggota dari Royal Society . Kontroversi ini dibagi berbahasa Inggris ahli matematika dari matematikawan benua selama bertahun-tahun, sehingga merugikan matematika Inggris. Pemeriksaan yang seksama atas karya-karya dari Leibniz dan Newton menunjukkan bahwa mereka tiba di hasil mereka secara independen, dengan Leibniz memulai pertama dengan integrasi dan Newton dengan diferensiasi. Saat ini, baik Newton dan Leibniz diberikan kredit untuk mengembangkan kalkulus secara independen. Ini adalah Leibniz, namun, yang memberikan disiplin baru namanya. Newton disebut kalkulus "ilmu fluxions".
Sejak saat Leibniz dan Newton, banyak yang hebat matematika telah memberi kontribusi pada pembangunan berkelanjutan kalkulus. Salah satu karya pertama dan paling lengkap pada analisis yang terbatas dan sangat kecil ditulis pada tahun 1748 oleh Maria Gaetana Agnesi .
http://upload.wikimedia.org/wikipedia/commons/thumb/5/57/Maria_Gaetana_Agnesi.jpg/150px-Maria_Gaetana_Agnesi.jpg


C.        MACAM-MACAM KALKULUS

1.     DIFERENSIAL KALKULUS

 http://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Tangent_derivative_calculusdia.svg/300px-Tangent_derivative_calculusdia.svg.png

Garis singgung pada (x, f (x)). F turunan '(x) dari sebuah kurva pada sebuah titik adalah kemiringan (naik lebih dari menjalankan) garis singgung dengan kurva pada titik tersebut.
Diferensial kalkulus adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari turunan dari suatu fungsi. Proses untuk menemukan turunan disebut diferensiasi. Mengingat fungsi dan titik dalam domain, turunan pada titik itu adalah cara pengkodean perilaku skala kecil fungsi di dekat titik itu. Dengan menemukan turunan dari fungsi pada setiap titik dalam domainnya, adalah mungkin untuk menghasilkan fungsi baru, yang disebut fungsi turunan atau hanya turunan dari fungsi asli. Dalam jargon matematika, derivatif adalah operator linear yang input dan output fungsi fungsi kedua. Ini lebih abstrak dari banyak proses dipelajari dalam aljabar dasar, di mana fungsi biasanya masukan angka dan output nomor lain. Sebagai contoh, jika fungsi penggandaan diberi masukan tiga, maka itu output, dan enam jika fungsi mengkuadratkan diberi masukan tiga, maka itu output sembilan. Derivatif, bagaimanapun, dapat mengambil fungsi mengkuadratkan sebagai masukan. Ini berarti bahwa derivatif mengambil semua informasi dari mengkuadratkan fungsi seperti bahwa dua dikirim ke empat, tiga dikirim ke sembilan, empat dikirim ke enam belas, dan sebagainya-dan menggunakan informasi ini untuk menghasilkan fungsi lain. (Fungsi ini menghasilkan ternyata menjadi fungsi penggandaan.)
Simbol yang paling umum untuk derivatif adalah suatu tanda apostrof seperti disebut prima . Dengan demikian, turunan dari fungsi f adalah f ', diucapkan "f prima." Misalnya, jika f (x) = x 2 adalah fungsi mengkuadratkan, maka f '(x) = 2 x adalah turunannya, fungsi penggandaan.
Jika input merupakan fungsi waktu, maka turunan yang mewakili perubahan yang berkenaan dengan waktu. Misalnya, jika f adalah fungsi yang mengambil waktu sebagai input dan memberikan posisi bola pada waktu itu sebagai output, maka turunan dari f adalah bagaimana posisi berubah dalam waktu, yaitu, itu adalah kecepatan dari bola.
Jika suatu fungsi linear (yaitu, jika grafik fungsi adalah garis lurus), maka fungsi tersebut dapat ditulis sebagai y = mx + b, di mana x adalah variabel independen, y adalah variabel dependen, b adalah y-intercept, dan:
m = \ frac {\ text {naik}} {\ text {run}} = \ frac {\ text {perubahan} y} {\ text {perubahan} x} = \ frac {\ Delta y} {\ Delta x}.
Hal ini memberikan nilai yang pasti untuk kemiringan garis lurus. Jika grafik fungsi bukanlah garis lurus, bagaimanapun, maka perubahan y dibagi dengan perubahan x bervariasi. Derivatif memberikan makna yang tepat dengan gagasan perubahan output terhadap perubahan input. Agar konkret, marilah f fungsi, dan memperbaiki titik dalam domain dari f. (A, f (a)) adalah titik pada grafik fungsi. Jika h adalah angka mendekati nol, maka h + adalah angka yang dekat dengan. Oleh karena itu (a + h, f (a + h)) dekat dengan (a, f (a)). Kemiringan antara dua titik adalah
m = \ frac {f (a + h) - f (a)} {(a + h) - a} = \ frac {f (a + h) - f (a)} {h}.
Ungkapan ini disebut hasil bagi perbedaan. Sebuah garis melalui dua titik pada kurva disebut garis garis potong, sehingga m adalah kemiringan garis garis potong antara (a, f (a)) dan (a + h, f (a + h)). Garis garis potong hanya perkiraan dengan perilaku fungsi tersebut pada titik karena itu tidak menjelaskan apa yang terjadi antara a dan h +. Hal ini tidak mungkin untuk menemukan perilaku dengan dengan mengatur jam ke nol karena ini akan memerlukan membagi dengan nol, yang tidak mungkin. Derivatif didefinisikan dengan mengambil batas sebagai h cenderung nol, yang berarti bahwa ia menganggap perilaku f untuk semua nilai kecil h dan ekstrak nilai konsisten untuk kasus ketika h sama dengan nol:
\ Lim_ {h \ to 0} {f (a + h) - f (a) \ over {h}}.
Secara geometris, derivatif adalah kemiringan dari garis singgung pada grafik f pada. Garis singgung batas garis garis potong seperti derivatif adalah batas quotients perbedaan. Untuk alasan ini, derivatif kadang-kadang disebut kemiringan fungsi f.
Berikut ini adalah contoh khusus ini, turunan dari fungsi mengkuadratkan di input 3. Misalkan f (x) = x 2 menjadi fungsi mengkuadratkan.
http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Sec2tan.gif/300px-Sec2tan.gif
F turunan '(x) dari sebuah kurva pada sebuah titik adalah kemiringan dari garis singgung terhadap kurva yang pada saat itu. Kemiringan ini ditentukan dengan mempertimbangkan nilai limit dari lereng garis garis potong. Di sini fungsi yang terlibat (ditarik merah) adalah f (x) = x 3 - x. Garis singgung (dalam hijau) yang melalui titik (-3 / 2, -15 / 8) memiliki kemiringan 23/4. Perhatikan bahwa skala vertikal dan horisontal dalam gambar ini berbeda.
\ Begin {align} f '(3) & = \ lim_ {h \ to 0} {(3 + h) ^ 2 - 3 ^ 2 \ over {h}} \ \ & = \ lim_ {h \ to 0} {9 + 6h + h ^ 2 - 9 \ over {h}} \ \ & = \ lim_ {h \ to 0} {6h + h ^ 2 \ over {h}} \ \ & = \ lim_ {h \ untuk 0} (6 + h) \ \ & = 6. \ End {align}
Kemiringan garis singgung fungsi mengkuadratkan pada titik (3,9) adalah 6, artinya, ia akan naik enam kali lebih cepat seperti yang akan ke kanan. Proses batas yang baru saja dijelaskan dapat dilakukan untuk setiap titik dalam domain fungsi mengkuadratkan. Ini mendefinisikan fungsi turunan dari fungsi mengkuadratkan, atau hanya turunan dari fungsi mengkuadratkan untuk pendek. Sebuah perhitungan yang mirip dengan yang di atas menunjukkan bahwa turunan dari fungsi mengkuadratkan adalah fungsi penggandaan.

B.    INTEGRAL KALKULUS
Integral kalkulus adalah ilmu yang mempelajari definisi, properti, dan aplikasi dari dua konsep terkait, integral tak tentu dan integral tertentu. Proses menemukan nilai terpisahkan itu disebut integrasi. Dalam bahasa teknis, kalkulus integral mempelajari dua terkait operator linear.
Integral tak tentu adalah antiturunan , operasi terbalik dengan derivatif. F adalah integral tak tentu dari f ketika f adalah turunan dari F. (Ini penggunaan huruf besar dan huruf kecil untuk fungsi dan integral tak tentu adalah umum dalam kalkulus.)
Masukan integral tertentu fungsi dan output sebuah angka, yang memberikan daerah antara grafik input dan sumbu x . Definisi teknis dari integral tertentu adalah batas dari sejumlah bidang persegi panjang, yang disebut penjumlahan Riemann.
Sebuah contoh yang memotivasi adalah jarak perjalanan dalam waktu tertentu.
\ Mathrm {Jarak} = \ mathrm {Kecepatan} \ cdot \ mathrm {Waktu}
Jika kecepatan adalah konstan, perkalian hanya diperlukan, tetapi jika perubahan kecepatan, maka kita perlu metode yang lebih kuat untuk menemukan kejauhan. Salah satu metode tersebut adalah untuk perkiraan jarak yang ditempuh oleh putus waktu ke interval pendek banyak waktu, kemudian mengalikan waktu yang telah berlalu di masing-masing interval dengan salah satu kecepatan di interval tersebut, dan kemudian mengambil jumlah (a jumlah Riemann ) dari perkiraan jarak tempuh pada setiap interval. Ide dasarnya adalah bahwa jika hanya berlalu waktu singkat, maka kecepatan akan tetap kurang lebih sama. Namun, jumlah Riemann hanya memberikan perkiraan jarak yang ditempuh. Kita harus mengambil batas semua jumlah Riemann seperti untuk menemukan jarak yang tepat bepergian.
http://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Integral_as_region_under_curve.svg/280px-Integral_as_region_under_curve.svg.png
Integrasi dapat dianggap sebagai tolok area di bawah kurva, didefinisikan oleh f (x), antara dua titik (di sini a dan b). Jika f (x) pada diagram di sebelah kiri mewakili kecepatan seperti itu bervariasi dari waktu ke waktu, jarak yang ditempuh (antara waktu diwakili oleh a dan b) adalah luas daerah yang diarsir s.
Untuk perkiraan bahwa area, metode intuitif adalah dengan membagi jarak antara a dan b menjadi beberapa segmen yang sama, panjang setiap segmen diwakili oleh Ax simbol. Untuk setiap segmen kecil, kita dapat memilih satu nilai dari fungsi f (x). Call bahwa h nilai. Maka luas persegi panjang dengan basis Ax dan tinggi h memberikan jarak (waktu Ax dikalikan dengan kecepatan h) perjalanan di segmen itu. Terkait dengan setiap segmen adalah nilai rata-rata dari fungsi di atas itu, f (x) = h. Jumlah dari semua persegi panjang seperti memberikan perkiraan daerah antara sumbu dan kurva, yang merupakan perkiraan dari total jarak yang ditempuh. Sebuah nilai yang lebih kecil untuk Ax akan memberikan persegi panjang lebih dan dalam kebanyakan kasus pendekatan yang lebih baik, tapi untuk jawaban yang tepat kita perlu mengambil batas sebagai Ax mendekati nol. Simbol integrasi adalah \ Int \,, S memanjang (S singkatan dari "jumlah"). Integral tertentu ditulis sebagai:
\ Int_a ^ b f (x) \, dx.
dan dibaca "integral dari b ke f-of-x terhadap x." Para notasi Leibniz dx dimaksudkan untuk menyarankan membagi area di bawah kurva ke dalam jumlah tak terbatas persegi panjang, sehingga Ax lebar mereka menjadi dx sangat kecil. Dalam formulasi dari kalkulus didasarkan pada batas, notasi
\ Int_a ^ b \ ldots \, dx
harus dipahami sebagai operator yang mengambil fungsi sebagai masukan dan memberikan nomor, daerah itu, sebagai output; dx bukan angka, dan tidak sedang dikalikan dengan f (x).
Integral tak tentu, atau antiturunan, tertulis:
\ Int f (x) \, dx.
Fungsi yang berbeda dengan hanya konstan memiliki turunan yang sama, dan oleh karena itu antiturunan dari sebuah fungsi yang diberikan sebenarnya adalah keluarga fungsi yang berbeda hanya dengan suatu konstanta. Karena turunan dari fungsi y = x ² + C, di mana C adalah setiap konstan, adalah y '= 2 x, antiturunan dari yang terakhir diberikan oleh:
\ Int 2x \, dx = x ^ 2 + C.
Sebuah konstan belum ditentukan seperti C di antiturunan dikenal sebagai konstanta integrasi    

C.        PENGARUH KALKULUS DALAM KEHIDUPAN SEHARI-HARI
Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.
Aplikasi kalkulus diferensial meliputi perhitung kecepatan dan percepatankemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luasvolumepanjang busurpusat massakerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat danderet Fourier.
Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret tak terhingga, yang kemudian berhasil memecahkan paradoks tersebut.