Geometri Euclid

Geometri Euclid
Daripada Wikipedia, ensiklopedia bebas.
Satu persembahan Euclid dariSekolah Athens oleh Raphael.
Geometri Euclid merupakan sebuah sistem matematik yang disumbangkan oleh seorang ahli matematik Yunani bernama Euclid dari Alexandria. Teks Euclid,Elements merupakan sebuah kajian sistematik yang terawal mengenai geometri. Ia sudah menjadi salah satu buku-buku yang paling berpengarh di dalam sejarah, sama banyaknya dengan kaedahnya yang mempunyai isi kandungan matematik. Kaedah cara yang mengandungi andaian satu set aksiom secara intuitif yang sangat menarik, dan kemudiannya membuktikan banyak usul (teorem-teorem) daripada aksiom-aksiom berkenaan. Walaupun banyak daripada keputusan-keputusan oleh Euclid sudah dinyatakan oleh ahli-ahli matematik Yunani sebelumnya, Euclid merupakan orang yang pertama untuk menunjukkan bagaimana usul-usul ini diletakkan secara sempurna membentuk satu deduksi dan sistem logik yang komprehensif.
Buku Elements ini bermula dengan geometri satah, yang masih lagi diajar di sekolah menengah sebagai satu sistem aksioman dan contoh-contoh pembuktian formal yang pertama. Kemudiannya, Elements merangkumi geometri pepejal dalam tiga dimensi, dan seterusnya geometri Euclid telah dipanjangkan kepada satu bilangan dimensi yang terhingga. Kebanyakan daripada Elements menyatakan keputusan-keputusan dalam apa yang kini disebut sebagai teori nombor, yang boleh dibuktikan menerusi kaedah geometri.
Selama dua ribu tahun, kata adjektif "Euclid" tidak diperlukan kerana pada masa itu tiada geometri lain dapat dibayangkan. Aksiom-aksiom Euclid nampak seperti sangat jelas sehinggakan apa-apa teorem lain yang dibuktikan daripadanya dianggap benar secara mutlak. Hari ini, bagaimanapun, banyak geometri bukan Euclid sudah diketahui, yang pertamanya telah dijumpai pada awal abad ke-19. Ia juga tidak boleh diambil mudah bahawa geometri Euclid hanya menggambarkan ruang fizikal. Satu implikasi daripada teori Einstein mengenai teori kerelatifan umum bahawa geometri Euclid merupakan satu anggaran yang baik kepada sifat-sifat ruang fizikal hanyak sekiranya medan graviti tidak terlalu kuat.
Gambaran sejarah purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.
Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.

Awal Bilangan
Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol diantaranya :
Simbol bilangan bangsa Babilonia:
Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM:
Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno:
Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia:
Simbol bilangan bangsa Yunani Kuno:
Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini:
Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini, seperti yang tampak dalam gambar berikut:

Perkembangan Teori Bilangan
Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal


PERTANYAAN:
1.Geometri adalah...
2.Salah satu buku euclid berisi tentang..
3.Jelaskan gambaran sejarah purbakala dari matematika!
4.Bukti terdini matematika tertulis adalah...
5.Matematika Babilonia ditulis menggunakan sistem...

Tidak ada komentar: